Thursday, July 19, 2012
Diesel Electronic Unit Injector
The unit injector combines a high-pressure pump and nozzle with a solenoid valve to form compact assembly. As a result, high-pressure lines are no longer necessary and injection can be controlled by the integrated and extremely precise solenoid valve at pressures of up to 2000 bar. Each cylinder has a unit injector fitted between the valves in the cylinder head. The unit injector is used in both passenger cars and commercial vehicles.
The Bosch Unit Injector system was first used in the VW Passat TDI in 1998, after which it rapidly found favour within the VW range. With the V10 TDI, VW recently presented what is currently the most powerful diesel engine for use in a car.
Saturday, July 14, 2012
Diesel injection pump
Robert Bosch has contributed to Diesel In-Line Fuel-Injection Pumps: Bosch Technical Instruction as an author. Robert Bosch GmbH is ranked among the world's major equipment suppliers. The Bosch experts that make up the editorial team come from the relevant divisions of Bosch and are at the forefront of technical developments in their field. Bosch demonstrates its leading competence in automotive technology through the sheer number of its applications for patents and patented designs.
inline pump
The diesel fuel pump is a fairly complex and sturdy mechanism. In fact, it is the most complex diesel engine part. Additionally, a diesel fuel pump must be durable enough that it can withstand the pressure of the compressed air, and the heat of the injection process. The fine mist of fuel needed for the proper ignition must be maintained by the diesel fuel pump under these extreme conditions.
Diesel fuel pumps may be located just about anywhere on the engine, depending on the manufacturers design. Much experimentation has been done over the years regarding the most effective placement of the diesel fuel pump. So far it seems that so long as the pump is mounted on the engine, it will effectively deliver fuel to the cylinders. A gasoline fuel pump, on the other hand, may be mounted anywhere in the engine compartment or along the fuel distribution system.
Depending on the location and design of the diesel fuel injector pump, pre-combustion chambers, customized induction valves, and other systems are often used in the injection process. These injection enhancers often aid in circulating, or swirling the air inside the cylinder for more efficient combustion. Just as with any engine fuel injection system, diesel fuel pumps are constantly being improved to be more efficient and less costly.
Saturday, November 12, 2011
Common Rail System
The common rail system accumulates high-pressure fuel in the common rail and injects the fuel into the engine cylinder at timing controlled by the engine ECU, allowing high-pressure injection independent from the engine speed. As a result, the common rail system can reduce harmful materials such as nitrogen oxides (NOx) and particulate matter (PM) in emissions and generates more engine power.
DENSO leads the industry in increasing fuel pressure and maximizing the precision of injection timing and quantity, achieving cleaner emissions and more powerful engines. DENSO’s common rail systems are supplied to a variety of vehicles including passenger cars and commercial vehicles.
DENSO Technology – Leading the World
In 1995, DENSO launched the world’s first common rail system for trucks.
In 2002, DENSO launched a 1,800-bar common rail system that achieved the industry’s highest injection pressure, and five-time multiple injections at a high accuracy. This system comfortably cleared EURO4 emission regulations without a diesel particulate filter.
Benefits and Features
DENSO’s common rail system can inject fuel at up to 1,800 bar, significantly reducing the concentration of PM in emissions.
DENSO’s new injectors can perform five injections during each combustion stroke. The five times multiple injections, including pilot injection with a predetermined small fuel quantity, reduce PM and NOx in emissions, and achieve quietness at idling equivalent to gasoline-powered engines.
The high fuel injection pressure is generated by the supply pump, which is the lightest in the world for passenger car common rail systems.
diesel engine
internal combustion engines designed to convert the chemical energy available in fuel into mechanical energy. This mechanical energy moves pistons up and down inside cylinders. The pistons are connected to a crankshaft, and the up-and-down motion of the pistons, known as linear motion, creates the rotary motion needed to turn the wheels of a car forward.
Both diesel engines and gasoline engines covert fuel into energy through a series of small explosions or combustions. The major difference between diesel and gasoline is the way these explosions happen. In a gasoline engine, fuel is mixed with air, compressed by pistons and ignited by sparks from spark plugs. In a diesel engine, however, the air is compressed first, and then the fuel is injected. Because air heats up when it's compressed, the fuel ignites.
The diesel engine uses a four-stroke combustion cycle just like a gasoline engine. The four strokes are:
Intake
stroke -- The intake valve opens up, letting in air and moving the piston down.
Compression stroke -- The piston moves back up and compresses the air.
Combustion stroke -- As the piston reaches the top, fuel is injected at just the right moment and ignited, forcing the piston back down.
Exhaust stroke -- The piston moves back to the top, pushing out the exhaust created from the combustion out of the exhaust valve.
Remember that the diesel engine has no spark plug, that it intakes air and compresses it, and that it then injects the fuel directly into the combustion chamber (direct injection). It is the heat of the compressed air that lights the fuel in a diesel engine. In the next section, we'll examine the diesel injection process.
New Turbocharger Ball Bearing Technology
September 4, 2009 --The Comp Turbo CT3B turbocharger is relatively new on the scene, is dynamite in a small package and has a bearing system that utilizes the latest in ball bearing technology. Racing applications need turbochargers that accelerate at the fastest possible rate and the CT3B bearing system allows it to do just that.
The acceleration rate of a turbocharger is a function of the rotor inertia and the friction losses in the bearing system. Conventional bearing systems have floating sleeve bearings that have an inner and outer oil film fed by lube oil under pressure from the engine lubricating system. They also must employ a stationary thrust bearing that is also fed by lube oil under pressure from the engine. The friction loss attributed to a stationary thrust bearing is proportional to the fourth power of the radius and can amount to several horsepower at the high speed at which turbochargers operate. The oil films in conventional sleeve bearing systems have significant viscosity that produces appreciable friction losses due to oil film shear when the turbocharger rotor accelerated and running at high speed. The friction losses in the sleeve bearings and in the thrust bearing result in mechanical efficiencies in the middle 90% range in conventional turbochargers. There is little or no oil film shear in ball bearings which operate with rolling friction only so that the CT3B accelerates much faster than turbochargers using sleeve bearings systems.
The CT3B bearing system is a proprietary design that is unique in the industry. It utilizes full compliment, angular contact ball bearings with ceramic balls. Compared with steel balls, ceramic balls in ball bearings have a number of advantages. Bearing service life is two to five times longer. They run at lower operating temperatures and allow running speeds to be as much as 50% higher. The surface finish of ceramic balls is almost smooth, producing lower friction losses and lower vibration levels. There is less heat buildup during high speed operation, they exhibit reduced ball skidding and have a longer fatigue life. All these characteristics make ceramic ball bearings ideal for use in turbochargers where they must operate at very high speeds and survive in a high temperature environment. The Full compliment bearings do now use a cage to position the balls and this additional feature, combined with the ceramic material provides a combination that has minimal friction losses. The mechanical efficiency of the CT3B turbo can approach 99%, and this contributes to rotor acceleration rates that have been shown to be faster than competition.
The angular contact bearings are mounted in an elongated steel cylinder that is free to rotate in the bearing housing. The outside diameter of the cylinder is fed with lube oil and this outer oil film provides a cushion against shock and vibration. Two angular contact bearings are mounted in tandem on the compressor end of the cylinder in an arrangement that carries rotor thrust in both axial directions. A single angular contact bearing is slid ably mounted under pre- load on the turbine end of the cylinder and is free to move axially with shaft elongation when heat is conducted down the shaft from the hot turbine wheel. The elongated steel cylinder containing the angular contact bearings represents complete bearing system and can be inserted and/or removed as an assembly making the CT3B turbocharger fully upgradeable, serviceable and re-buildable.
Racing Applications require a turbocharger that builds boost as rapidly as possible, thus allowing the engine develop high torque at low engine speeds and with boost capability that can produce very high maximum power output .The CT3B turbocharger does exactly that. For example when mounted on one dragster, the CT3B produced 1.7 bar boost in two tenths of a second and developed 650 HP ready for takeoff. Now that’s phenomenal response and very impressive.
In street applications, the acceleration rate of a vehicle equipped with a CT3B turbocharger is enhanced and moves the engine out of inefficient operating regimes more rapidly. An improvement in number of gallons of fuel used is the usual result when a vehicle is accelerated faster. Under steady-state operation, the lower HP losses in the CT3B ball bearing system means power is available to the turbocharger compressor which results in higher intake manifold pressure. In most cases, higher boost can make an additional contribution to improving engine fuel consumption.
Comp Turbo can supply the CT3B turbocharger with various compressors and turbine wheel trims to tailor its performance so that it matches specific engine application requirements; whether they be racing, street or stationary. In addition, the CT3B will be followed in the near future by other model sized now under development at Comp Turbo. These new models will utilize the proprietary technology that has been designed into the successful CT3B to complete a line of high performance turbochargers utilizing the many advantages of ceramic ball bearings. They will also accelerate like greased lightning to produce the ultimate in engine and vehicle response
2 stroke engine
Stroke: Either the up or down movement of the piston from the top to the bottom or bottom to top of the cylinder (So the piston going from the bottom of the cylinder to the top would be 1 stroke, from the top back to the bottom would be another stroke)
Induction: As the piston travels down the cylinder head, it 'sucks' the fuel/air mixture into the cylinder. This is known as 'Induction'.
Compression: As the piston travels up to the top of the cylinder head, it 'compresses' the fuel/air mixture from the carburetor in the top of the cylinder head, making the fuel/air mix ready for igniting by the spark plug. This is known as 'Compression'.
Ignition: When the spark plug ignites the compressed fuel/air mixture, sometimes referred to as the power stroke.
Exhaust: As the piston returns back to the top of the cylinder head after the fuel/air mix has been ignited, the piston pushes the burnt 'exhaust' gases out of the cylinder & through the exhaust system.
Transfer Port: The port (or passageway) in a 2 stroke engine that transfers the fuel/air mixture from the bottom of the engine to the top of the cylinder
4 stroke engine
Four Stroke Engine
The four stroke engine was first demonstrated by Nikolaus Otto in 1876 hence it is also known as the Otto cycle. The technically correct term is actually four stroke cycle. The four stroke engine is probably the most common engine type nowadays. It powers almost all cars and trucks.
The four strokes of the cycle are intake, compression, power, and exhaust. Each corresponds to one full stroke of the piston; therefore, the complete cycle requires two revolutions of the crankshaft to complete.
Intake
During the intake stroke, the piston moves downward, drawing a fresh charge of vaporized fuel/air mixture. The illustrated engine features a poppet intake valve which is drawn open by the vacuum produced by the intake stroke. Some early engines worked this way; however, most modern engines incorporate an extra cam/lifter arrangement as seen on the exhaust valve. The exhaust valve is held shut by a spring (not illustrated here).
Otto compression stroke
Compression
As the piston rises, the poppet valve is forced shut by the increased cylinder pressure. Flywheel momentum drives the piston upward, compressing the fuel/air mixture.
Otto power stroke
Power
At the top of the compression stroke, the spark plug fires, igniting the compressed fuel. As the fuel burns it expands, driving the piston downward.
Otto exhaust stroke
Exhaust
At the bottom of the power stroke, the exhaust valve is opened by the cam/lifter mechanism. The upward stroke of the piston drives the exhausted fuel out of the cylinder.
Ignition System
This animation also illustrates a simple ignition system using breaker points, coil, condenser, and battery.
A number of visitors have written to point out a problem with the breaker points in my illustration. In this style ignition circuit, the spark plug will fire just as the breaker points open. The illustration appears to have this backwards.
In fact, the illustration is correct; it just moves so fast it's difficult to see! Here's a close-up of the frames just at the point the plug fires:
5 stroke engine
Ilmor Engineering, the firm made famous for its work with Indy Cars and Formula One, as well as Triumph Motorcycles and Harley Davidson plus GM, Honda and Mercedes have built an engine that will make you think for a bit, it's a 700cc, 3 cylinder, 130 horsepower turbocharged 5 stroke. Did they say 5 stroke?
The 2 outboard cylinders are the high pressure (HP) fired cylinders while the center low pressure (LP) cylinder makes extra use of the exhaust gases. The point of this design is to enable the expansion and compression strokes to be decoupled. The effective expansion ratio is 14.5:1, almost diesel territory, converting the maximum thermal energy into work. The compression ratio can be reduced, delaying knock, without a decrease in performance. The extra expansion stroke of the LP cylinder is, effectively, the 5th stroke.
Fuel consumption and emissions levels are similar to that of current diesel engines, without the serious problem of particulate and NOx emissions which plague diesels.
Fuel consumption is decreased by 10% over conventional 4 stroke operation. The entire engine is built using conventional technology, no new manufacturing technology or processes are needed.
This is more than a computer model, the running prototype is being dyno tested with a second development engine planned for in-vehicle testing.
Just when you think the internal combustion engine has pretty well emptied the bag of tricks, a little creative thinking comes along and gets higher fuel efficiency and lower weight than equivalent engines by adding another stroke to the process. So now we have 2, 4, 5 and even 6 strokes. Very impressive engineering, I like it.
Saturday, October 29, 2011
Chassis


Turbine engine

VVT-i, VVTL-i, Dual VVT-i, VVT-iE

history of automobile


1770: Nicolas-Joseph Cugnot built a three wheeled steam powered wagon. An example is preserved at the Musee des Arts et Metiers, Paris.
1801: Richard Trevithick built a steam powered coach. (His later 1803 carriage had a road accident.)
1861, UK: Speed limits of 10mph (16km/h) in the country and 5mph (8km/h) in town were imposed on powered vehicles.
1865, UK: Speed limits were lowered to 4mph (country) and 2mph (town) and a man on foot and carrying a red flag had to precede each vehicle by 60 yards, esp. to warn those with horses. (After 1878 the man on foot no longer needed to carry a flag.)
1884: Starley and Sutton invent the Rover Safety Cycle (bicycle); the company later developed into Rover cars.
1885: Karl Benz (1844-1929) built a motorised tricycle driven by an oil-spirit internal combustion engine in 1885. This is widely held to be the first successful motor vehicle.
1885: Gottlieb Daimler (1834-1900) built a motorised bicycle in 1885 and a 4-wheel motor carriage in 1886.
1892 August 26: Rudolf Diesel filed a patent application for 'a method of apparatus for converting heat into work,' US letters patent #542,846, 16 July 1895, and, filed 15 July 1895, 'internal combustion engine' #608,845, 9 August 1898 -- the compression-ignition, "diesel" engine.
1896, UK: Speed limits on light [road-] locomotives were raised from 4mph to 14mph and they no longer needed to be preceded by a man on foot. The first London to Brighton run was held in celebration.
1898: The World Land Speed Record was set at 63.15km/h (39.24mph) by Gaston the Comte de Chasseloup-Laubat driving a Jeantaud electric car [Geo00].
1898: The Renault Voiturette type A.
1898: Latil (France) made front wheel drive units and then 4x4.
1898: Tatra started manufacturing.
1899: Camille Jenatzy and de Chasseloup-Laubat traded the Land Speed Records until Jenatzy raised it to 105.88km/h (65.75mph) driving the electric La Jamais Contente [Geo00]. The car survives at the Compiegne Musee de la Voiture (Automobile Museum).
1899: Fabbrica Italiana Automobili Torino (Fiat) was formed.
1899: August Horch began a car company carrying his own surname in 1899; it evolved into Auto-Union and eventually Audi.
1900: Ferdinand Porsche's La Toujours Contente had battery-power with four electric motors, one at each wheel. (He later patented the Mixte transmission in which a petrol engine drove a dynamo and electric motors drove the wheels. It was too expensive for the day.)
1900: Puch's first car.
1901: Volume imports of cars began into Australia starting with De Dion Boutons.
1902: Leon Serpollet raised the Land Speed Record to 120.8km/h (75.06mph) in the Easter Egg Gardner-Serpollet steam car [Geo00].
1902: Mercedes registered as a trademark. March 1, 1902, the first 40hp Mercedes Simplex ever built was supplied to Emil Jellinek in Nice. It was named after Jellinek's daughter.
1902: Charles Stewart Rolls starts up C.S. Rolls and Co., later Rolls Royce.
1902: Spyker featured a 6-cylinder engine and four wheel drive!
1902: Minerva started making cars.
1903: Ford, Model A.
1904: The Federation International de l'Automobile (FIA) was founded.
1904: Rover 8hp.
1906: Societa Italinana Automobili Darracq (SIAD) founded; it later became Alfa Romeo (about 1921).
1906: Vincenzo Lancia released his first car.
1906: Fred Marriott, driving a Stanley steam car, at Daytona, raised the World Land Speed record to 121.57mph [NT98] over 1km; his speed of 127.66mph over one mile was not recognised internationally. (Also see Aug. 2009.)
1907: Felix and Norman Caldwell of South Australia applied for a patent for four wheel drive with four wheel steering; they went on to build Caldwell Vale 4x4 trucks with Henry Vale.
1907: The Peking to Paris car race was won by an Itala [Bar72].
08
A 1908 Itala.
1908: "General Motors (GM) was formed in the USA in 1908 when William C. (Billy) Durant brought Oldsmobile and Buick together to form General Motors Company. A year later, Cadillac and Oakland (which became Pontiac in 1932) marques joined General Motors." --GM.
1908: Ford Model-T production began.
1908: Harry Dutton and Murray Aunger drove from Adelaide to Darwin in a 25hp Talbot.
1909: Bugatti built his first car.
1911: FWD sold its first 4x4.
1911: First Indianapolis 500 race.
1913: Jeffrey Quad 4x4 truck went into production.
1913: Bamford and Martin Ltd founded; later became Aston Martin.
1914: The Society Anonima Officine Alfieri Maserati, Bologna, was created by the Maserati brothers.
1915: Big Lizzie road train (.au).
1917: First Oshkosh four wheel drive truck.
1919: Bentley founded.
1921: DKW - scooters first.
1922: Citroen half-tracks crossed the Sahara, leaving from Touggourt in Algeria.
1922: Baby Austin 7.
1922: Swallow Sidecar Company founded; later became Jaguar cars in 1945.
1923, May 26-27: First 24 hour race at Le Mans, won by Andre Lagache and Rene Leonard in a Chenard & Walcker at 92.06 km/h.
1924: Ernest Eldridge (GB), driving the Fiat special Mephistopheles (below) fitted with a 21.7-litre Fiat airship engine, set a Land Speed Record of 234.98km/h (146.01mph).
M at speed, more recently
1924: The first MG car was built - on a modified Morris Oxford chassis.
1924, December 28: Citroen half-tracks left to traverse Africa.
1925: Chrysler founded.
1927: Henry Segrave driving the "1000hp" Sunbeam raised the World Land Speed Record to over 200mph --FIA.
1927: Model-T production ended; 15 million Model Ts had been built from 1908 to 1927.
1927-1928: Francis Birtles drove a Bean car from England to Melbourne taking 10 months.
1928: Malcolm Campbell, driving Bluebird with a 950hp Napier engine, raised the World Land Speed Record to 206.96mph.
1929: AEC started to build AWD trucks in conjunction with FWD (UK).
1929: Henry Segrave driving the Golden Arrow raised the World Land Speed Record to 231.36mph (327.34km/h) -- FIA.
1929: First Monaco Grand Prix was won by Williams in a Bugatti -- FIA.
1931: Bentley taken over by Rolls Royce.
1931-1932: Citroen-Haardt expedition, using Citroen half-tracks, followed part of Marco-Polo's route from Beirut to Beijing.
1932: Audi became part of Auto-Union, with DKW, Horch and Wanderer.
1932: Miller 4x4 racing cars at Indianapolis.
1934: AEC road train (one of three built) was brought to Australia. It consisted of an 8×8 prime-mover and two 8-wheel self-tracking trailers.
1934: Dodge started building 4WD trucks (-George Miles).
1934: Prototype PX-33 four wheel drive car built for the Japanese government; the car did not go into production (Mitsubishi). Thanks to Balazs Toth.
1935: Malcolm Campbell in Bluebird raised to raised the World Land Speed Record to 301.129mph (484.620km/h) -- FIA.
1936: Toyota's first production car, the AA.
1937: Svenska Aeroplan Aktiebolaget, aircraft factory founded, later became Saab.
1937: ‘Gesellschaft zur Vorbereitung des deutschen Volkswagens mbH’, Company for the Development of the German People's Car (VW), was registered [Hop71].
1938: GAZ 61 - Russian 4x4.
1940: The Jeep specifications were issued. 1940-1941: Bantam built 2700 light 4x4s, early "Jeeps".
1941-1945: Ford and Willys-Overland built 700,000 General Purpose vehicles for WWII. GP became Jeep.
1946, October 10: Unimog introduced (- H. J. Feil); also see 1951.
1948: Series-1 Land-Rover released.
1948: Porsche's first car had a 1086cc 30kW VW engine.
1948: Jaguar XK120 launched.
1948: Holden 48-215.
1948: Ford released the 1st of the F-Series vehicles.
1950: The Ford GPA, or amphibious Jeep, Half Safe was "driven" across the Atlantic ocean by Ben and Elinore Carlin. This is true!
1950: VW Transporter lays down the foundations of the hippy era.
1950: The first round of the inaugural FIA Formula One (F1) World Championship was held at Silverstone on 13 May; the seven-race season included Monaco, Switzerland, Belgium, France, Italy and the Indianapolis 500. "Nino" Farina, driving an Alfa Romeo 158, won the first race, and the championship.
1951: First Toyota Landcruiser was built under the BJ Jeep name. The LandCruiser name came in 1954.
1951: Daimler Benz ("Mercedes") took over Unimog; also see 1948.
1952: Suzuki's first motorcycle.
1952 March 12: Launch of the racing sports car version of the Mercedes Benz 300SL (of the gullwing doors).
1953: The first Redex Reliability Trial was held. Competitors had two weeks to cover 11,000km taking them around Australia. Ken Tubman and John Marshall won in a Peugeot 203.
1954-1956: The amphibious Jeep La Tortuga "drove" from Alaska to Tierra del Fuego.
1955-1956: London to Singapore Overland (except for the Channel!) in 2×Land-Rovers.
1955: Suzuki's first car.
1955: The wonderful Goggomobil.
1955 December 5: The 8 mile Preston by Pass (part of the M6) opened -- the UK's first stretch of motorway. The first stretch of the M1 opened on 2 November 1959 -- AA.
1958: First Toyota LandCruisers imported into Australia.
1959: BMC Mini went on sale.
1959: Haflinger by Steyr-Daimler-Puch.
1960: A Jeep and a Land-Rover traversed the Darien Gap.
1960: Ford Falcon XK.
1960: The first British traffic wardens took up duty in September.
1961: Jaguar E-type unveiled at the Geneva Motor Show.
1961: Stirling Moss drove a Ferguson Project 99 (P99) with the Ferguson 4WD system to victory in the Oulton Park Gold-Cup race.
1964, 17 July: Donald Campbell in Bluebird (4WD) raised the World Land Speed Record to 403mph at Lake Eyre, Australia.
1964: Porsche 911, it went on to become a classic.
1964: Mini Moke went on sale.
1965: VW bought Audi.
1965: Craig Breedlove in the jet car Spirit of America set a World Land Speed Record of 600.601mph (966.574km/h) -- FIA.
1966: The Jensen FF road car had Formula Ferguson 4WD and Dunlop Maxaret anti-lock brakes (ABS).
1967, January 4: Donald Campbell (1921-1967) was killed while attempting to raise the world water speed record to over 300mph on Coniston Water, uk.
1969: Ferrari joined the Fiat group.
1969, 20 July: The lunar module, Eagle, from Apollo 11 landed on the moon carrying Neil Armstrong and Buzz Aldrin.
1970: Range Rover released - luxury full-time 4WD.
1971: Lunar rover "car" on the moon in the Apollo 15 mission.
1971: Ford Falcon XY ute 4WD (.au).
1971-1972: British Trans-Americas Range Rover expedition. The Darien Gap was the most difficult section.
1974: Subaru Leone 4x4 car.
1978 August: The .au Gvmt introduced import parity pricing for local oil and petrol reached au$0.21/litre [the Age p.5 1/1/2009] -- $0.95 per (imperial) gallon.
petrol au$0.21/l
1979: AMC produced the Eagle 4x4 car.
1981: The specifications for the High Mobility Multipurpose Wheeled Vehicle (HMMWV) was issued; later known as the Humvee or Hummer.
1981: Audi revolutionized rallying with the Quattro 4WD rally car.
1981: Porsche showed the Porsche 911 AWD concept car at the Frankfurt Motor Show.
1983: Land-Rover 110, coil-sprung, full-time 4WD.
1983: Richard Noble, driving the jet car Thrust2, raised the World Land Speed Record to 1019.47km/h (633.468mph), Black Rock Desert, 4/10/83 [NT98].
1984: A Porsche 911 AWD won the Paris Dakar rally.
1986: Porsche 959 AWDs finished 1, 2 and 6 in the Paris Dakar rally.
1992: McLaren F1 rewrote the super-car rule book.
1993: Maserati was bought by Fiat from de Tomaso.
1994: BMW bought Rover Group from BAe.
1996: Lotus was taken over by Proton.
1996: The new Jeep Wrangler got coil springs.
1997: Thrust SSC, driven by Andy Green, broke the sound barrier and raised the World Land Speed Record to 1227.985kph (763.035mph), Mach 1.0175 under the prevailing conditions [NT98].
1998: Bentley bought by VW. Is nothing sacred? BMW pulled a swifty and bought the Rolls Royce name.
1998: Bugatti name bought by VW.
1998: Chrysler and Mercedes-Benz merged to form DaimlerChrysler (splitting up again in 2007).
1999: Volvo cars sold to Ford.
2000: Ford bought LandRover, and Phoenix took over MG - Rover from BMW.
2001: BMW put the retro. new Mini on sale in Europe (.au in 2002).
2001 July: Rolls-Royce and Bentley Motor Cars announced details of the last Rolls-Royce Silver Seraph model to commemorate 97 years of Rolls-Royce cars; production ends with 2001. VW continued to build Bentleys but future Rolls Royces were to be built at BMW's new factory.
2002: Rolls-Royce became pure BMW, and Bentley pure Volkswagen.
2008: Crude oil rose as high as us$147/barrel in July before falling to the us$30s at year's end as the global financial crisis bit.
ULP au$1.00 to $1.70/l
2008: Needing cash, Ford sold Jaguar and LandRover to Tata of India.
2009, January 29: The Skycar, a "buggy" fitted with a parafoil wing, flew the Straits of Gibraltar en route from Paris to Tombouctou (Timbuktu).
2009: General Motors (GM) and Chrysler passed into bankruptcy and were restructured, the latter forming an alliance with Fiat. VW and Porsche began a merger.
2009, August 25 & 26: The British Steam Car raised the Land Speed Record for a steam powered car to 139.843mph and 148.308mph over the measured mile and kilometer respectively. (See 1906.)
2010, August 24: The Venturi Buckeye Bullet 2.5 streamliner (Ohio State Univ., Venturi Automobile), driven by Roger Schroer, set a Land Speed Record for a battery powered electric vehicle of 495.526 km/h (307.905mph) for 1km, 495.140 km/h (307.666mph) for 1 mile -- FIA (A.8.3).
References
[Bar72] L. Barzini, Peking to Paris, Alcove Press, 1972, edited and reprinted from the 1907 original.
[Geo00] N. Georgano (ed), The Beaulieu Encyclopedia of the Automobile (2 vols.), The Stationary Office, London, 2000.
[Hop71] K. B. Hopfinger, The Volkswagen Story, G.T.Foulis & co., 1971.
[NT98] R. Noble & D. Tremayne, THRUST Through the Sound Barrier, Partridge 1998.
See motoring books.
Diesel Injection Pump


First thing's first: Pull the valve cover. I find that unscrewing the three 10 mm bolts that hold in the cruise control actuator and moving it over allows for easy replacement of the valve cover, for what it's worth. Then remove the fan blad and shroud from the bay by means of the four 10mm nuts that hold the fan in place. This will give you enough "swinging" room for turning the engine over by hand. Use a 27mm socket (a 1-1/8" works, also) on a small extension, 1/2" drive for turning the crank over by hand, and never go backwards. OK, this is all familiar from the valve adjustment routine.
To pull the pump, remove all lines attached. There is one fuel line banjo bolt on the block-side of the pump, one fuel line banjo bolt on the fender-side, and oil-feed line on the fender-side, and the fuel suply that goes to the priming pump and then from the pump to the main filter. I usually leave the two that run from the filter attached to the pump, and just removing them from the filter block. Remove the oil-feed from the pump, and this will allow easy access to the first nut you will remove. It is a 13mm, and there are three of them. The bottom is the easiest, I think. Just lay barely under the front of the car, reach your hand up there with a gear wrench, and feel for it. It's easy. To get to the top one, I use a 13mm deep-wall on a 6-inch extension on a U-joint on a 3/8" drive socket wrench. It's not to tough. And the middle one (blocked earlier by the oil-feed) can only be had by an open-ended wrench.
The final attachment is held in the back. It is a royal PITA to get to, and I have made a mock-up replacement. You will almost HAVE to use a gear wrench for it (it makes life a LOT easier). Once that is off, go under the car, and remove the support bracket that mounts to the block at the rear of the pump (held on by two 13mm bolts). Once all of this stuff is disconnected, you can remove the pump with the filter housing in place by sliding it straight back and upwards at the same time. I have heard it is sometimes necessary to remove the rack dampener pin, but I have never had to do so, and I have done this job probably around 11 or 12 times.
Once the pump is out, you will need to put your new one in. Crank the engine over many times by hand to get everything "settled". I doubt this does anything at all, but it's a mental thing for me (OK, so I'm crazy ;-). Look on the cam shaft near the front of the engine where it slides through the first bearing mount. You will see a tick mark. Turn the engine over until the stationary tick mark and the mobile tick mark are lined up. Your harmonic balancer should read at 0* TDC. Crank the engine around again, passing TDC once (that will be the exhaust stroke), and stop at 24* BEFORE TDC the second time. The tick mark on the cam should be just shy of reaching the TDC marker.
With the engine at this time setting, you will shoot the pump in. Take a 3/4" wrench for socket wrench, and as you look upon the nut on the front of the injection pump, turn it clockwise, making several resolutions. Then crank it, and again, only clockwise, until the spot with a missing tooth lines up with the dash mark that is set about 15* behind 12:00. It is easy for it to move out of time, so you must be gentle with the reinstallation.
Slide the collar that came off out of the engine with the pump over the sprocket on the pump. There is no special way to do this... just slide it on without turning anything. Piece of cake. Then, gently lower the pump into the engine, frontside going down first at an angle, and let it slide into place. Tighten it down at a random position with the nuts (NOT the rear bolt) and connect the feed lines. Pump the hand-priming pump to hell, and vent off your fuel filter so that there is NO more air in the system. Crank the engine over by hand, and see if fuel comes out of the feed lines. If it does, great. If not, reconnect your fuel injection lines, and pull the socket wrench of the engine. Then, disconnect your glow plug relay, go in your car, and hit the starter a few times to build some pressure in the lines without starting the engine. Go remove the line #1 injection line, and soak up the diesel in the port with the corner of a shop rag, being careful not to leave lint or anything behind. Then crank the engine over by hand, monitoring that first port. When you just BARELY start to see fuel well up in it, stop. Look at your degree marker. If it is at 24* BTDC, then your perfect, though I hear running at 26* can offer a little more low-end power. To advance, loosen the three nuts, and tilt the pump AWAY from the block with a cheater bar of some sort. Two people help this to be done a little more easily, as one can hold the cheater bar in place while the other tightens the pump. The lines will act as a memory-spring that can be a pain to deal with. If you want, remove all the lines (which is what I prefer).
Subscribe to:
Posts (Atom)